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Vision
BGSIT is committed to the cause of creating tomorrow’s engineers by providing quality education inculcating ethical values.
Mission
M1: Imparting quality technical education by nurturing a conducive learning environment.
M2: Offering professional training to meet industry requirements.
M3: Providing education with a moral - cultural base and spiritual touch.

DEPARTMENT OFMECHANICAL ENGINEERING

VISION:
 Producing competent and sustainable Mechanical Engineers through Excellence, Innovations and Ethics.
MISSION:
M1: Offering quality Education by competent faculty.
M2: Providing adequate infrastructure and learning ambience.
M3: Developing inclination towards higher education, research, entrepreneurship and professional ethics.
M4: Promoting interaction with industries.
Program Educational Objectives (PEOs)
PEO-1: Graduate will be pursuing successful career & higher education.
PEO-2: Graduates will be able to Design, Analyze, Fabricate & Manage Applications of Mechanical Engineering.
PEO-3: Graduates will display Professional Ethics to work in a team & lead the team by effectively Communicating the ideas.
PEO-4: Graduates will practice Life long learning
Program Specific Outcomes (PSOs)
PSO-1: Ability to acquire competencies in Designing, Analyzing and Evaluating the Mechanical Components.
PSO-2: Ability to work Professionally by applying Manufacturing and Management practices.

PROGRAM OUTCOMES (PO’S)

The Mechanical engineering program students will attain:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems

PO2. Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice
PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

PO11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change





FINITE ELEMENT ANALYSIS  Course  Code : 17ME61
Module 1
Introduction to Finite Element Method : General description of the finite element method. Engineering applications of finite element method. Boundary conditions: homogeneous and non homogeneous for structural, heat transfer and fluid flow problems. Potential energy method, Rayleigh Ritz method, Galerkin’s method, Displacement method of finite element formulation. Convergence criteria, Discretization process, Types of elements: 1D, 2D and 3D, Node numbering, Location of nodes. Strain displacement relations, Stress strain relations, Plain stress and Plain strain conditions, temperature effects
Interpolation models :Simplex, complex and multiplex elements, Linear interpolation polynomials in terms of global coordinates 1D, 2D, 3D Simplex Elements
Module 2
One-Dimensional Elements-Analysis of Bars and Trusses : Linear interpolation polynomials in terms of local coordinate’s for1D, 2Delements. Higher order interpolation functions for 1D quadratic and cubic elements in natural coordinates, Constant strain triangle, Four-Nodded Tetrahedral Element (TET 4), Eight-Nodded Hexahedral Element (HEXA8), 2D iso- parametric element, Lagrange interpolation functions, Numerical integration: Gaussian quadrature
one point, two point formulae, 2D integrals. Fore terms: Body force, traction force and point loads,
Numerical Problems: Solution for displacement, stress and strain in 1D straight bars, stepped bars and tapered bars using elimination approach\n and penalty approach, Analysis of trusses
Module 3
Beams and Shafts : Boundary conditions, Load vector, Hermite shape functions, Beam stiffness matrix based on Euler- Bernoulli beam theory, Examples on cantilever beams, propped cantilever beams, Numerical problems on simply supported, fixed straight and stepped beams using\ndirect stiffness method with concentrated and uniformly distributed load
Torsion of Shafts : Finite element formulation of shafts, determination of stress and twists in circular shafts
Module 4
Heat Transfer : Basic equations of heat transfer: Energy balance equation, Rate equation: conduction, convection, radiation, energy generated in solid, energy stored in solid, 1D finite element formulation using vibrational method, Problems with temperature gradient and heat fluxes, heat transfer in composite sections, straight fins
Module 5
Axi-symmetric Solid Elements: Derivation of stiffness matrix of axisymmetric bodies with triangular elements, Numerical solution of axisymmetric triangular element(s) subjected to surface forces, point loads, angular velocity, pressure vessels.
Dynamic Considerations : Formulation for point mass and distributed masses, Consistent element mass matrix of one dimensional bar element, truss element, axisymmetric triangular element, quadrilateral element, beam element. Lumped mass matrix of bar element, truss element, Evaluation of Eigen values and Eigen vectors, Applications to bars, stepped bars, and beams

6 . Course Information
6 . 1 . 2 Text Books and Reference Books

TEXT BOOKS :
1 . Logan, D. L., A first course in the finite element method,6th Edition, Cengage Learning, 2016.
2 . Rao, S. S., Finite element method in engineering, 5th Edition, Pergaman Int. Library of Science, 2010. 3 . Chandrupatla T. R., Finite Elements in engineering, 2nd Edition, PHI, 2013.
REFERENCE BOOKS :
1 . J.N.Reddy, “Finite Element Method”- McGraw -Hill International Edition. Bathe K. J. Finite Elements Procedures, PHI.
2 . Cook R. D., et al. “Concepts and Application of Finite Elements Analysis”- 4th Edition, Wiley & Sons, 2003.
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Introduction to Theory of Elasticity
Objectives
[image: ]To introduce to the concept of elasticity, Finite Element Method Steps, advantages, disadvantages and application of FEM.
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3D body
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Outcomes
Brief idea on elasticity concepts and introductory concepts of FEM
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To gain knowledge on assuming interpolation polynomials and deriving the shape functions for some simplex elements
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Outcomes
Knowledge on assuming interpolation polynomials and deriving the shape functions for some simplex elements.




Objectives

SOLUTION OF 1-D BAR ELEMENTS

To learn the methods to solve one-dimensional bar elements
[image: ]


[image: ]


[image: ]

[image: ][image: ]



[image: ]


[image: ]


[image: ]

[image: ]


[image: ]


[image: ]


[image: ]



Outcomes
Able to solve one dimensional bar elements problems.




Objectives

 TRUSSES

To learn basic knowledge of trusses, deriving shape functions of trusses, solving few problems
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Outcomes
Able to solve 2-D truss problems using finite element methods




Objectives

BEAMS

To derive the hermite shape functions for beams and solving few problems on beams.
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The Hermite shape functions can be used to write v in the form

dv dv
= + + H, 817
v(§) = Hyy + Hz(df) Hyo, 4(d£) (8.17)
The coordinates transform by the relationship
1-~¢ 1+¢
x= P X+ 3 X2
X tx  xn—x
= 818
; e ®18)
Since €, = x; — x, is the length of the element, we have
£
de = ;‘dg (8.19)
The chain rule dv/dé = (dv/dx)(dx/d) gives us
dv L, dv
& 2dr (8.20)
Noting that dv/dx evaluated at nodes 1and 2 is g, and q,, respectively, we have
& £
wWé) = Higy + 5 Hagy + Hygs + 5 Higs (821)
which may be denoted as
v =Hgq (8.22)
where
- 2 £
H= Hy o Hy, Hy, = H, (823)

In the total potential energy of the system, we consider the integrals as summations Over
the integrals over the elements. The element strain energy is given by

d\?
U, =EI / (E) dx (824
From Eq. 8.20,
dv _2dv " v 44
dv €, dE an - C_Edgl

Then, substituting v = Hg, we obtain

a0\ 16 en\T( ol
(?> ( ie ) ( d§1> 629

q
(dZ_H> 3, “1+3£t’ 3,143
&) 7|3t 27Ty

l

[]

(8.26)
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On substituting dx = (€,/2) d¢ and Eqs. 8.25 and 8.26 in Eq. 5.24, we get

%2 2p(-1+38)¢, I8 601+ 36)e,
-1+ 35)1 -1+9¢

— =g -l-143pE ——8

U, =qu8121/H ( p (1306 b
T2 8, Symmetric H3 —36(1 + 39, 44

(1 + 35)1(2

a f
(827

Each term in the matrix needs to be integrated. Note that

5 .
/ gae=2 [ “eae-o /
-1 -1 -1

This results in the element strain energy given by
U. = 1q'k’q (8.28)
where the element stiffness matrix is
12 6f, -12 6L,
K= EI| 6, 42 —6¢, 26
£l =12 -6L, 12 -6¢,
6¢, 20 -6¢ 4t

1
=2

(8.29)

which is symmetric.
In the development based on Galerkin's approach (see Eq. 8.12), we note that

&fedy _ o 16(PH'(EH
Bl i ae = VEG ( g ) ( ag )q ®30
where N
W= v g (8.31)

is the set of generalized virtual displacements on the element, v = Hgq, and ¢ = His.
Equation 8.30 yields the same element stiffness as Eq. 8.28 on integration, with ¥'kq
being the internal virtual work in an element.

LOAD VECTOR

The load contributions from the distributed load p in the element is first considered.
We assume that the distributed load is uniform over the element:

¢, [
Apvdx - (5[ /‘ Hd{)q (8.32)

On substituting for H from Egs. 8.16 and 8.23 and integrating, we obtain

/pvdx =fTq (8.33)

£
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FIGURE 8.6 Distributed load on an element.

¢, pt:
. [p P

(834)

This equivalent load on an element is shown in Fig, 8.6. The same result is obtained by con-
sidering the term f, p¢> dx in Eq.8.12 for the Galerkin formulation. The point loads F,, and
M, are readily taken care of by introducing nodes at the points of application. On intro-
ducing the local-global correspondence, from the potential-energy approach, we get

1 =3Q'KQ - Q'F

and from Galerkin’s approach, we get

¥KQ - ¥'F =0

where ¥ = arbitrary admissible global virtual displacement vector.

(835)

(836)
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SHEAR FORCE AND BENDING MOMENT

Using the bending moment and shear force equations
™ _dM

M=EI— =2 =
e 14 o and v = Hq
we get the element bending moment and shear force:
EI
M= 7[66«11 + (3¢ — 1)4,q, — 6£q: + (3¢ + 1)qu] (8.38)
6E1
V="5Cat a2+ L) (8.39)

These bending moment and shear force values are for the loading as modeled using
equivalent point loads. Denoting element end equilibrium loads as R;, R., R;. and R,.

we note that

—pt,
R 12 e, -12 66 ||a g <
e
R| gl e 4 -ee 28||a 1”2“
= e (8.40)
R, -2 —et, 12 -6t || g -
R, 66, 20 —6¢, 48 || g, ’;;7'

Ttis easily seen that the first term on the right is kg, Also note that the second term needs
to be added only on elements with distributed ioad. In books on matrix structural analy-
sis, the previous equations are written directly from element equilibrium. Also. the last
vector on the right side of the equation consists of terms that are called fixed-end reac-
tions. The shear forces at the two ends of the element are V; = R, and V; = —R;. The

end bending moments are M, = —R, and M, = R,.
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Example 8.1

For the beam and loading shown in Fig. E8.1, determine (1) the slopes at 2and 3 and (2) the
vertical deflection at the midpoint of the distributed load.

12 kN/m

e
wm o e ®

7 7.
— L
E=20GPa I=4x10°mm*
6000 N 6000 N
{imonN.m 1000N.m§ l )
2 3
FIGURE E8.1

Solution We consider the two elements formed by the three nodes. Displacements Oy,
Q,.Q5,and Q; are constrained to be zero, and O, and Qg need to be found. Since the lengths
and sections are equal, the element matrices are calculated from Eq. 8.29 as follows:

EI (200 X 10°)(4 X 10

7 7

8 X 10°N/m

e=1 Q& O O
e=2 S Q% O O

We note that global applied loads are F, = -1000N.m and F; = +1000N.0
obtained from p€%/12, as seen in Fig. 8.6. We use here the elimination approach presented
in Chapter 3. Using the connectivity, we obtain the global stifiness after elimination:

OIS
K+ il

K

8 2
= 8% 16
x10{8 2]
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‘1he set of equations is given by

sx0f; J{&} - (T}
{8 -{my

For element 2,4, = 0,4, = Q4,43 = 0,and g, = Q. To get vertical deflection at the mid-
point of the element, use v = Hgat £ = 0:

The solution is

te ¢
V=04 SHO. 40+ SHO,

= (3)(3)(—2679 x 107 + (3)(-1)(a464 x 107)
=-893 % 10°m
= —0.0893 mm |}
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Principle of Minimum Potential Energy

For conservative systems, of all the kinematically admissible displacement fields,
those corresponding to equilibrium extremize the total potential energy. If the
extremum condition is a minimum, the equilibrium state is stable.
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POTENTIAL ENERGY AND EQUILIBRIUM;
THE RAYLEIGH-RITZ METHOD

In mechanics of solids, our problem is to determine the displacement u of the body shown
in Fig. 1.1, satisfying the equilibrium equations 1.6. Note that stresses are related to strains,
which, in turn, are related to displacements. This leads to requiring solution of second-
order partial differential equations. Solution of this set of equations is generally referred
to as an exact solution. Such exact solutions are available for simple geometries and load-
ing conditions, and one may refer to publications in theory of elasticity. For problems of
complex geometries and general boundary and loading conditions, obtaining such solutions
is an almost impossible task. Approximate solution methods usually employ potential en-
ergy or variational methods, which place less stringent conditions on the functions.

Potential Energy, 11

The total potential energy IT of an elastic body, is defined as the sum of total strain
energy (U) and the work potential:

1 = Strain energy + Work potential
W) (WP) (1.24)

For linear elastic materials, the strain energy per unit volume in the body is 107 For
the elastic body shown in Fig. 1.1, the total strain energy U is given by

U= 1/oTsdv (1.25)
2 h

The work potential WP is given by
WP =— /qudV - /uTTds - >u'P, (1.26)
v s {
The total potential for the general elastic body shown in Fig, 1.1 is

n= 1/.rTsdv - /n'de - /uTTds - >u'p, 1.27)
2 v v s t
We consider conservative systems here, where the work potential is independent
of the path taken. In other words, if the system is displaced from a given configuration
and brought back to this state, the forces do zero work regardless of the path. The po-
tential energy principle is now stated as follows:
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Kinematically admissible displacements are those that satisfy the single-valued
nature of displacements (compatibility) and the boundary conditions. In problems where
displacements are the unknowns, which is the approach in this book, compatibility is
automatically satisfied.

To illustrate the ideas, let us consider an example of a discrete connected system.
Example 1.1
Figure E1.1a shows a system of springs. The total potential energy is given by
T =3k} + 3hadh + 3hoth + 348 — Fig — Frgy

where 8, 3;, 85, and 8, are extensions of the four springs. Since 8, = ¢, — ¢,, 5, = @,
8; = g5 — ¢,and 8, = —g;, we have

I = Ski(a — @) + o} + 3hslas — @2 + Sk = Figy — Figs

where gy, 4, and g; are the displacements of nodes 1,2, and 3, respectively.

%——«Mki/w—-
(@ L
FIGUREE1.1a

ENANNNN

For equilibrium of this three degrees of freedom system, we need to minimize I1 with
1eSpect 10 4y, ¢, and g,. The three equations are given by

am_o
ag ~0 i=h23 (1.28)
which are
all
g @ -e) -F=0
af _
- @ @) kg - k(g - g) =0
all
g K@ @) thg - F=o

These equilibrium equations can be put in the form of Kg = F as follows:

3 —k; o

@ F
Thoktktk wh={0 (129)
0 —k; ks + k, @ A
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Koy = F
Koy — kidy — kady = 0
ksdy ~ kiby = B
which is precisely the set of equations represented in Eq. 1.29.

1
kﬁ,«—ﬁfw—o—» F

FIGURE E1.1b

‘We see clearly that the set of equations 1.29 is obtained in a routine manner using the
potential energy approach, without any reference to the free-body diagrams This makes the
potential energy approach attractive for large and complex problems. -

Rayleigh-Ritz Method

For continua, the total potential energy I1 in Eq. 1.27 can be used for finding an ap-
proximate solution. The Rayleigh-Ritz method involves the construction of an assumed
displacement field, say,

u= Sad(x,yz) i=1to€

v = Dad(x,y2) j=€¢+1tom (1.30)

w= Jadlx,y.z) k=m+lion
n>m>¢

The functions ¢, are usually taken as polynomials. Displacements «, v, w must be kine-
matically admissible. That is, #, v, w must satisfy specified boundary conditions. Intro-
ducing stress-strain and strain-displacement relations, and substituting Eq. 1.30 into
Eq.1.27 gives

I =(a.a,,...,a,) (1.31)

where 7 = number of independent unknowns. Now, the extremum with respect to a;,
(i = 1tor) yields the set of r equations
2

i=1,2,..., 1.3
o i=1,2 r (132)
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Kxample 1.2
The potential energy for the linear elastic one-dimensional rod (Fig. E1.2), with body foro

neglected, is
1 (du\?
n= 3 /u’ EA< dx) dx — 2u,
where u; = u(x = 1).
Let us consider a polynomial function

u =gy +ax + a3x*
This must satisfy « = Oatx = Oandu = Oatx = 2.Thus,

Hence,

-

y E=1,A

Solution from
mechanics

Approximate
solution

+1.5

Solution from
Mechanics

Stress from
[~ approximate
solution

Stress  +1

FIGURE E1.2
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Ihen dujdx = 2a;(—1 + x) and
1 2
= 5/ 4a}(~1 + x)dx — 2(—a,)
o

=2a§/ (1~ 2x + x*)dx + 2a,
o

=24(3) + 24,
We set ¢11/da, = 4a3(§) + 2 = 0, resulting in
a;= =075 w =—a;=075
The stress in the bar is given by

a:E%:l.sa—x) [

We note here that an exact solution is obtained if piecewise polynomial interpo-
lation is used in the construction of u.

The finite element method provides a systematic way of constructing the basis
functions ¢, used in Eq. 1.30.
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.10 GALERKIN'S METHOD

Galerkin’s method uses the set of governing equations in the development of an inte-
gral form. It is usually presented as one of the weighted residual methods. For our dis-
cussion, let us consider a general representation of a governing equation on a region V:

Lu=P (133)

For the one-dimensional rod considered in Example 1.2, the governing equation is the

differential equation
d du
L% 2
dx( A rtx) 0
‘We may consider L as the operator
d d

d-;EAE )

operating on u.
The exact solution needs to satisfy (1.33) at every point . If we seck an approxi-
mate solution #, it introduces an error €(x), called the residual:

e(x) = L - P (1.34)

The approximate methods revolve around setting the residual relative to a weighting
function W, to zero:

/W,(LE ~P)dV=0 i=lton (1.35)
v
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INTRODUCTION

‘The finite clement method has become a powerful tool for the numerical solution of a
wide range of engineering problems. Applications range from deformation and stress
analysis of automotive, aircraft, building, and bridge structures to field analysis of heat
flux, fluid flow, magnetic flux, seepage, and other flow problems. With the advances in
computer technology and CAD systems, complex problems can be modeled with rela-
tive ease. Several alternative configurations can be tested on a computer before the first
prototype is built. All of this suggests that we need to keep pace with these develop-
ments by understanding the basic theory, modeling techniques, and computational as-
Ppects of the finite element method. In this method of analysis, a complex region defining
a continuum is discretized into simple geometric shapes called finite elements. The ma-
terial properties and the governing relationships are considered over these elements
and expressed in terms of unknown values at element corners. An assembly process,
duly considering the loading and constraints, results in a set of equations. Solution of
these equations gives us the approximate behavior of the continuum.
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>IRESSES AND EQUILIBRIUM

A three-dimensional body occu;
Fig. 1.1. Points in the body are
strained on some region,

pying a volume V and having a surface § is shown in
If)cated by x, y, z coordinates. The boundary is con-
where displacement is specified. On part of the boundary, dis-
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tributed force per unit area T, also called traction, is applied. Under the force, the body
deforms. The deformation of a point x ( = [x, y, z]T) is given by the three components
of its displacement:

u = [g,v,w]" (L1)

The distributed force per unit volume, for example, the weight per unit volume, is the vec-
tor f given by

f=[fof . LI (1.2)

The body force acting on the elemental volume ¢V is shown in Fig. 1.1. The surface trac-
tion T may be given by its component values at points on the surface:

T=(T.T,. 7] 3

Examples of traction are distributed contact force and action of pressure. A load P act-
ing at a point i is represented by its three components:

P, =[PP, (1.4

The stresses acting on the elemental volume dV are shown in Fig. 1.2. When the volume
dV shrinks to a point, the stress tensor is represented by placing its components in a
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(3 X 3) symmetric matrix. However, we represent stress by the six independent com-
ponents as in

0 = [0,,09,0,, Ty, Ters Tyl T (1.5)

where o, o, o, are normal stresses and 7, 7., 7,,, are shear stresses. Let us consid-
er equilibrium of the elemental volume shown in Fig. 1.2. First we get forces on faces by
multiplying the stresses by the corresponding areas. Writing F, = 0, 2F, =0, and
2F, = 0 and recognizing dV = dx dy dz, we get the equilibrium equations

do, 9Ty

+2 40 0
ax dy 24 fe=

dar,, 9 a, 97y,
+f, =
x ay 8z F (1.6)
37y, | 87y do,
ax | 3y oz
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Special Cases

One dimension. In onc dimension, we have normal stress o along x and the
corresponding normal strain €. Stress~strain relations (Eq. 1.14) are simply

o = Ee (1.16)
Two dimensions. In two dimensions, the problems are modeled as plane stress
and plane strain.

Plane Stress. A thin planar body subjected to in-plane loading on its edge sur-
face is said to be in plane stress. A ring press fitted on a shaft, Fig. 1.5a, is an example. Here
stresses o';, 7, and 7, are set as zero. The Hooke’s law relations (Eq. 1.11) then give us

%
““E"E
T,
L= (117)
2(1 + »)
Yy E Xy
&=- (o, t o)
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FIGURE 1.5 (a) Plane stress and (b} plane strain.
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The inverse relations are given by

1 1}
oy €
ob=; f,,z v 1 . 0 e (118)
Ty 00— LAIe

which is used as o = De.

Plane Strain. I a long body of uniform cross section is subjected to transverse
loading along its length, a small thickness in the loaded area, as shown in Fig. 1.5b, can
be treated as subjected to plane strain. Here ¢, v.., 7,, are taken as zero. Stress o,

may not be zero in this case. The stress—strain relations can be obtained directly from
Egs.1.14 and 1.15:

o, 1-w» v

E 0 €
o, 0= m v 1-w ? €, (1.19)
Tay 0 0 3= v\ sy

D here is a (3 X 3) matrix, which relates three stresses and three strains.

Anisotropic bodies, with uniform orientation, can be considered by using the ap-
propriate D matrix for the material.
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Etement Division

Consider the bar in Fig. 3.1. The first step is to mode] the bar as a stepped shaft, consist-

is applied.
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FIGURE 3.2 Finite element modeling of a bar.




image18.png
Numbering Scheme

We have shown how a rather complicated looking bar has been modeled using a discrete
number of elements, each element having a simple geometry. The similarity of the var-
ious elements is one reason why the finite element method is easily amenable to com-
puter implementation. For easy implementation, an orderly numbering scheme for the
model has to be adopted.

In a one-dimensional problem, every node is permitted to displace only in the +x
direction. Thus, each node has only one degree of freedom (dof). The five-node finite
element model in Fig. 3.2b has five dofs. The displacements along each dof are denoted
by Q1,Qs, - - -, Os. In fact, the column vector Q = [0y, 0, .-, Qs]" is called the global
displacement vector. The global load vectoris denoted by F = (£, ..., F,]". The vec-
tors Q and F are shown in Fig. 3.3. The sign convention used is that a displacement or
load has a positive value if acting along the -+x direction. At this stage, conditions at the
boundary are not imposed. For example, node 1 in Fig. 3.3 is fixed, which implies 0, = 0.
These conditions are discussed later.

Each element has two nodes; therefore, the element connectivity information can
be conveniently represented as shown in Fig. 3.4. Further, the element connectivity table
is also given. In the connectivity table, the headings 1 and 2 refer to local node numbers
of an element, and the corresponding node numbers on the body are called global num-
bers. Connectivity thus establishes the local-global correspondence. In this simple ex-
ample, the connectivity can be casily generated since local node 1 is the same as the
element number ¢, and local node 2 is e + 1. Other ways of numbering nodes or more
complex geometries suggest the need for a connectivity table. The connectivity is intro-
duced in the program using the array NOC.
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COORDINATES AND SHAPE FUNCTIONS

Consider a typical finite element e in Fig. 3.5a. In the lox i

- el cal number scheme, the first
no::ile ;vﬂl be numbered 1 and the second node 2. The Rotation x; = x-coordinate of
node 1, x; = x-coordinate of node 2 is used. We define i inate
system, denoted by ¢, as ne a natural or intrinsic coordinal
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FIGURE 3.5 Typical element in x- and {-coordinates.
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From Fig. 3.5b, we see that £ = —1 at node 1 and £ = 1 at node 2. 1he length of an
element is covered when & changes from —1 to 1. We use this system of coordinates in
defining shape functions, which are used in interpolating the displacement field.

Now the unknown displacement field within an element will be interpolated by a
linear distribution (Fig. 3.6). This approximation becomes increasingly accurate as more
elements are considered in the model. To implement this linear interpolation, linear
shape functions will be introduced as

1 -

e

Ni(¢) = (3.5)

1

+ N
v

Ny(§) = (3.6)

s 1

The shape functions N, and N; are shown in Figs. 3.7a and b, respectively. The graph of
the shape function A, in Fig. 3.7a is obtained from Eq. 3.5 by noting that ¥, = 1 at
£=~1,N, = Oat £ = 1,and N, is a straight line between the two points. Similarly, the
graph of N, in Fig. 3.7b is obtained from Eq. 3.6. Once the shape functions are defined,
the linear displacement field within the element can be written in terms of the nodal
displacements g, and ¢, as

u=Ng + Nyg, (3.7a)
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FIGURE 3.6 Linear interpolation of the displacement field within an element.
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FIGURE 3.7 (a) Shape function ;,

(b) shape function N, and (c) linear interpolation using
N and N,
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Of, In matrix notation, as

where

N=[N,N] and q=(q,q,)" (38

In these equations, q is referred to as the element displacement vector. It is readily verk

fied from Eq. 3.7a that u = Gratnode 1, u = g, at node 2. and that u varies linearly
(Fig. 3.7¢). ’

X = Nx, + Nyx, (39)

that both the displacem, inate *
n 4 a ent 4 and the coordina
are interpolated within the element using the same shape functions N, and Nb. This
referred to as the isoparamerric fo ! -
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Example 3.1
Referring to Fig. E3.1, do the following:

{(a) Evaluate £, N,, and N, at point P,
(b) I ¢, = 0.003in. and g, = —0.005 in., determine the value of the displacement g at

point P,
1 P 2
AT:‘.:’ » X
x = 20in. x = 24in. x,=36in.
FIGURE E3.1
Solution

(a) Using Eq. 3.4, the ¢ coordinate of point P is given by
£ = H(24-20) -1
=-05
Now Egs. 3.5 and 3.6 yield

N, =075 and N, =025

(b) Using Eq.3.7a, we get
u, = 0.75(0.003) + 0.25(~0.005)
= 0.001in. L

The strain—displacement relation in Eq. 3.2 is

o
dx
Upon using the chain rule of differentiation, we obtain
du d§
=—— 3.10
=i (3.10)
From the relation between x and £ in Eq. 3.4, we have
a__2 (3.11)
dx  x;—x
Also, since
1- 1+¢
u=MNg + Na; = ——gq; + 2
2 2
we have
-q +
du ot @ G12)

dE 2
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‘lhus, £q.3.10 yields

e itata) G

The Eq. 3.13 can be written as
e=Bq (3.14)
where the (1 X 2) matrix B, called the element strain-displacement matrix, is given by
B=2 1 PRI (3.15)

Note: Use of linear shape functions results in a constant B matrix and, hence, in a
constant strain within the element. The stress, from Hooke’s law, is

¢ = EBq (3.16)

The stress given by this equation is also constant within the element. For interpolation
purposes, however, the stress obtained from Eq.3.16 can be considered to be the value
at the centroid of the element.

The expressions u = Nq, € = Bg, and o = EBq relate the displacement, strain
and stress, respectively, in terms of nodal values, These expressions will now be substi-

tuted into the potential-energy expression for the bar to obtain the element stiffness
and load matrices
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U, =—/UTEAdX

is the element strain energy.

Element Stiffness Matrix

Consider the strain energy term

U, = l/ereAdx (3.19)
2 Je
Substituting for & = EBq and € = Bq into Eq. 3.19 yields
U, = %/qTBTEBqux (3.20a)
or
U, = %qT / [BTEBA dx]q (3.20b)

In the finite element model (Section 3.2), the cross-sectional area of element ¢, denot-
ed by A,, is constant. Also, B is a constant matrix. Further, the transformation from x

to ¢ in Eq. 3.4 yields
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i |
dx = d¢ (3.21a)

or
¢
dv = S (3.21b)

where -1 = ¢ < 1,and €, = |x, — x| is the length of the element.
The element strain energy U, is now written as

1
U= ;q [A,g EB'B / dg:lq (3.22)
-1

where E, is Young’s modulus of element e. Noting that ', d¢ = 2 and substituting for
B from Eq. 3.15, we get

1. —1}_
U= qufE(Z{ it e (3.23)

which results in

1 AELl —1}‘] 629

=341
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This equation is of the form
1
U, = 5Ky (325)

where the element stiffness matrix k° is given by
EA [ 1 -1
w- 500
We note here the similarity of the strain energy expression in Eq. 3.26 with the strain

energy in a simple spring, which is given asU = %sz. Also, observe that k* is linearly
proportional to the product A, E, and inversely proportional to the length £,.

(3.26)

Force Terms

‘The element body force term fe u"fA dx appearing in the total potential energy is con-
sidered first. Substituting u = Ny, + Nyg,, we have

[itads = ag [(na + My ax @2
Recall that the body force f has units of force per unit volume. In the Eq. 3.27, A, and

f are constant within the clement and were consequently brought outside the integral.
‘This equation can be written as

i A,f/Nldx
/u1fAdx =q' ‘
‘ A,f/dex

j['he integrals of the shape functions described earlier can be readily evaluated by mak-
ing the substitution dx = (¢,/2) d¢. Thus,

(3.28)
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Alternatively, f, N dx is simply the area under the N, curve as shown in Fig. 3.8, whicl
equals 3+ €.+ 1= £,/2. Similarly, [ N, dx =

7 £.*1 = £./2. The body force term in Eq.3.28
reduces to
N
T Area:LN,dx:%»l(,-l
1 4,
L )

FIGURE 3.8 Integral of a shape function
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[ W'fAdx = qT%t’,f{}} (3.302)

which is of the form

/ WfAdy = ' (3.30b)
The right side of this equation is of the form Displacement X Force. Thus, the element
body force vector, £*, is identified as

= A”:‘f {1} (331)

The element body force vector above has a simple physical explanation. Since A £, is the
volume of the element and f is the body force per umt volume, we see that 4 t’,f gives
the total body force acting on the element. The factor  in Eq. 3.31 tells us that this total
body force is equally distributed to the two nodes of the element.

‘The element traction force term L «"T dx appearing in the total potential energy
is now considered. We have

/ T dx = / (Mg + Nyg)T dx (332)

Since the traction force T is constant within the element, we have

T [ Mdx
/ uTdx = g7 ° (333)
4 T [ Max

e

We have already shown that [, Ny dx = [, N;dx = £,/2.Thus, Eq.3.33 is of the form

/ W'T dx = q'T* (3.34)
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where the element traction-torce vector 1s given by

1= T;{;} (3.35)

We can provide a physical explanation for this equation as was given for the element

body force vector.
At this stage, element matrices k°, £, and T¢ have been obtained. After we account

for the element convectivity (in Fig. 3.3, for example, q = [Ql,Qz] for element 1,
= [Q,, 0s]" for element 2, etc.), the total potential energy in Eq. 3.18b can be written as

I = {Q'KQ - Q'F (3.36)

where K is the global stiffness matrix, F is the global load vector, and Q is the global
displacement vector. For example, in the finite element model in Fig. 3.2b,Kisa (5 x 5)
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matrix, and Q and F are each (5 X 1) vectors. Kis obtamned as follows: Using the element
connectivity information, the elements of each k° are placed in the appropriate loca-
tions in the larger K matrix, and overlapping elements are then summed. The F vector
is similarly assembled. This process of assembling K and ¥ from element stiffness and
force matrices is discussed in detail in Section 3.6.
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CONSTANT-STRAIN TRIANGLE (CST)

The displacements at points inside an element need to be represented in terms of the
nedal displacements of the element. As discussed earlier, the finite element method uses
the concept of shape functions in systematically developing these interpolations. For
the constant strain triangle, the shape functions are linear over the element. The three
shape functions Ny, N;, and N; corresponding to nodes 1,2, and 3, respectively, are shown
in Fig. 5.4. Shape function N, is 1 at node 1 and linearly reduces to 0 at nodes 2 and 3.
The values of shape function N thus define a plane surface shown shaded in Fig. 5.4a.
N, and N; are represented by similar surfaces having values of 1 at nodes 2 and 3, re-
spectively, and dropping to 0 at the opposite edges. Any linear combination of these
shape functions also represents a plane surface. In particular, N; + N, + N; represents
aplane at a height of 1 at nodes 1,2, and 3, and, thus, it is parallel to the triangle 123. Con-
sequently, for every Ny, Ny, and N;,

N+N+N=1 {5.9)

N,, N,, and N, are therefore not linearly independent; only two of these are indepen-
dent. The independent shape functions are conveniently represented by the pair £, 7 as

M=¢ N=n MN=1-f(-1 (510)

where £,  are natural coordinates (Fig. 5.4). At this stage, the similarity with the one-
dimensional element (Chapter 3) should be noted: in the one-dimensional problem the
x-coordinates were mapped onto the £ coordinates, and shape functions were defined
as functions of £. Here, in the two-dimensional problem, the x-, y-coordinates are mapped
onto the ¢-, n-coordinates, and shape functions are defined as functions of £ and 5.

The shape functions can be physically represented by area coordinates. A point
(x,y) in a triangle divides it into three areas, A;, A, and A3, as shown in Fig. 5.5. The
shape functions N;, N;, and N; are precisely represented by
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FIGURE 5.5 Area coordinates
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where A is the area of the element. Clearly, N, + N, + N; = 1 at every point inside
the triangle.

(5.11)

Isoparametric Representation

The displacements inside the element are now written using the shape functions and
the nodal values of the unknown displacement field. We have

u=Ng + Ngs + Nags
v =Ng; + Nogy + Nagg (5.12a)
or, using Eq. 5.10,
u = (q1—4s)¢ + (g5—g5)n + gs
v= (g~ g} + (49— ge)n + g5 (5.12b)
‘The relations 5.12a can be expressed in a matrix form by defining a shape function matrix

N_[N, 0N 0 N o]

“lo My oM 0N 613

and

u=Nq (5.14)
For the triangular element, the coordinates x, y can also be represented in terms of nodal
coordinates using the same shape functions. This is isoparametric representation, This ap-
proach lends to simplicity of development and retains the uniformity with other com-
plex elements. We have

x = Nix; + Nox; + Naxs
y =Ny + Noy, + Noys (5-15a)
or
x= (0~ x)+ (6~ x)n+ 2,
y=-pE+tr-—mntxn (5.15b)
Using the notation, x;; = x; — x;and y;; = y; -~ y;, we can write Eq.5.15b as
X =256t xn t X
y=ysé + ypan t+ s (5.15¢)
This equation relates x- and y-coordinates to the §- and #-coordinates. Equation 5.12

expresses u and v as functions of £ and 7.

Example 5.1
Evaluate the shape functions N;, N, and A at the interior point P for the triangular ele-
‘ment shown in Fig. E5.1,
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FIGURE ES.1 Examples 5.1 and 5.2.

Solution Using the isoparametric representation (Eqgs. 5.15), we have
3.85 = 15N, + 7N, + 4N, = <2.5¢ + n+4
48 = 2N, + 35N, + IN; = ~5¢ 35m+7

These two equations are rearranged in the form

2.5¢ - 33 =015
56+ 359 =122

Solving the equations, we obtain £ = 0.3 and 7 = 0.2, which implies that

Ni=03 N,=02 N, =05 L

In evaluating the strains, partial derivatives of & and » are to be taken with respect
tox and y. From Eqs. 5.12 and 5.15, we see that ,vand x, y are functions of £ and ». That
is,u = u(x(£m), y(¢,7)) and similarly v = 2(x(£,%), ¥(£,1)). Using the chain rule for

partial derivatives of i, we have
du _dudx  oudy
% " xor " yoe
du_duox  audy
o sxdm  dyey
which can be written in matrix notation as

u al ay ([ ou
% % o || ax

= 16
ou ax 3y () au 519

o an o J{ay
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where the (2 X 2) square matrix is denoted as the Jacobian of the transformation, J:
ox 2y
_| 9% o
J ax dy (5.17)
on on
Some additional properties of the Jacobian are given in the appendix. On taking the
derivative of x and y,

I= [xu }'13] (5.18)
*23 a3

Also, from Eq. 5.16,

a_u o

x| _ )

ou ¥ ou (5.19)

ay on
where J71 is the inverse of the Jacobian J, given by

a1 [ msoom ]
1 3 3
o detJ [-—xu X3 (520)

detd = x13)h3 ~ X230 (521)

From the knowledge of the area of the triangle, it can be seen that the magnitude of
det J is twice the area of the triangle. If the points 1,2, and 3 are ordered in a counter-
clockwise manner, det J is positive in sign. We have

A = }|detJ] (6.22)

where | | represents the magnitude. Most computer codes use a counterclockwise order
for the nodes and use det J for evaluating the area.

Example 5.2
Determine the Jacobian of the transformation J for the triangular element shown in Fig. E5.1.

y= X3 N3 -25 50
*13 Y13 30 -35

Thus, detJ = 23.75 units. This is twice the area of the triangle. If 1, 2,3 are in & clockwise
order, then det J will be negative. o

Solution We have

From Egs. 5.19 and 5.20, it follows that

ou u_  ou
x| _ 1 Y3 3 lea_” 23
ou detJ du du b

—=Xy37, T Xa
ay nge Mgy,
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Replacing u by the displacement v, we get a similar €xpression

av % v M 8y

o 3.2 T N3

axl__1 ) 7haE T (5.230)
v detd x v bx v

ay Wog P

Using the strain-displacement relations (5.5) and Eqs. 5.12b and 5.23, we get

du
ax
v
3y
du v
5 ax

1@ e - nsla - a)
= Getd) (@~ a6) + xus(as — a) (5.24a)
=x2(dr = gs) + x3(Gs = s} + sl — G6) ~ Yis(qe — s)

From the definition of x;; and y,;, we can write Y31 = —yjzand yi; = ¥3 ~ Y
and so on. The foregoing equation can be written in the form

1| Yt ynds + yiogs
€7 Qorg ) P02 T Xude + Xngs (5:240)
¥+ Yoty + X3y + ynds + X395 + yi0q,

This equation can be written in matrix form as

€=Bq (5.25)
where Bisa (3 X 6) element strain-displacement matrix relating the three strains to the
six nodal displacements and is given by

1| 0 oy 0 oy, o
o0 x, 0 oy, (526)

of the nodal coordinates.

Example 5.3

Find the strain-nodal displacement matrices B¢ for ¢
th Toca
numbers given at the cornere. e elements shown in Fig, E53. Use
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FIGURE E5.3

Solution 'We have
1 l:)'z: 0 y 0 y Ojl
B=——0 x 0 x5 0 x
¥z Y3 %13 ¥ X Mz
1[ 2 0 0 0 -2 o}
=zl 6 -3 0 3 0 0
-3 2 3 0 0 -2

where det J is obtained from xy3y53 — X303 = (3)(2) — (3)(0) = 6. Using the local num-
bers at the corners, B? can be written using the relationship as

1 -2 0 0 0 2 0
B = s ¢ 3 0-3 0 0 =
3 -2 -3 0 0 2

Potential-Energy Approach
The potential eneréy of the system, I1, is given by
H=%/eTDetdA— /u’fum— /u"’l'tde- Su'e, (527
A A L i

In the last term in Eq. 5.27, { indicates the point of application of a point load P; and
P, =[P, P,],T. The summation in  gives the potential energy due to all point loads.

Using the triangulation shown in Fig. 5.2, the total potential energy can be written
in the form

m= Z%[eTnetdA - 2 [u"'ftdA - [uf‘nde— }i_‘,ufr,- (5.28a)

or
n=3u, - E/uTMA - 2/ o'Trde - Do, (528b)
e e . L i

where U, = [ ¢"Det dA is the element strain energy.
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Element Stiffness

We now substitute for the strain from the element strain—displacement relationship in
Eq. 5.25 into the element strain energy U, in Eq. 5.28b, to obtain

U, = % / €"DerdA (5.29)

=1 / q'B"DBqr dA
2 Je

Taking the element thickness ¢, as constant over the element and remembering that all
terms in the D and B matrices are constants, we have

V=t qTBTDB,E( / dA)q (5.29)
Now, L dA = A,,where 4, is the area of the element. Thus,
U, = 3q",4,B"DBq (5.2%)
or
U, = 1q'kq (5:294)
where k* is the element stiffness matrix given by
k=, AB'DB (5.30)

For plane stress or plane strain, the element stiffness matrix can be obtained by tak-
ing the appropriate material property matrix D defined in Chapter 1 and carrying out
the previous multiplication on the computer. We note that k¢ is symmetric since D is
symmetric. The element connectivity as established in Table 5.1 is now used to add the

element stiffness values in k¢ into the corresponding global locations in the global stiff-
ness matrix K, so that

1
U= 3y (531
= _1_ T
=50KQ

Tl‘he global stiffness matrix K is symmetric and banded or sparse. The stiffness value Kij
is zero when the degrees of freedom ; and Jj are not connected tim)ugh an element. It/
and j are connected through one or more elements, stiffness values accumulate from
these element.s, For the global dof numbering shown in Fig. 5.2, the bandwidth is relat
ed to the maximum difference in node numbers of an elem‘en‘l,.over all the clements. If

i, 13, and iy are node numbers of an element e, th, i i
c B , the maximu; er dif-
ference is given by m element node numb:

m, = max(fi, - i,

A AT (5.323)
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‘Ihe hali-bandwidth 1s then given by

NBW = 2( max _(m,) + l) (5:32b)

1=e=<NE

where NE is the number of elements and 2 is the number of degrees of freedom per node.
The global stiffness K is in a form where all the degrees of freedom Q are free. It
needs to be modified to account for the boundary conditions.

Force Terms
The body force term [, wft dA appearing in the total potential energy in Eq. 5.28b is con-
sidered first. We have
/qur dA =1, / (uf, + vf,) dA
e e

Using the interpolation relations given in Eq. 5.12a, we find that

[wnan=a(us. [ Mas) + aus, [ Maa)
+ q;(t.fx [ deA) + q,(tJ, [ deA) (533)
+ qs(t,f,‘[NyiA) +q5(tJy[MM)

From the definition of shape functions on a triangle, shown in Fig. 5.4, f, N, dA represents
the volume of a tetrahedron with base area A, and helght of comner equal to 1 (nondi-
menslonal) The volume of this tetrahedron is given by § X Base area X Height (Fig. 5.6)

as in
[ was =14

Similarly, /, N;dA = f,N;dA = }A,, Equation 533 can now be written in the form

(534)

/ u'fdA = q'f (5.35)

e

where f* is the element body force vector, given as
LA,
= —3‘[fnf,,f,,fy,f,.f,]T (5.36)

These element nodal forces contribute to the global load vector F. The connectivity in
Table 5.1 needs to be used again to add f* to the global force vector F. The vector ¢ is
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FIGURE 5.6 Integralofa shape function.

of dimension (6 X 1), whereas Fis (N X 1). This assembly procedure is discussed in
Chapters 3 and 4. Stating this symbolically,

F — E e (537)

A traction force is a distributed load acting on the surface of the body. Such a force
acts on edges connecting boundary nodes, A traction force acting on the edge of an el-

ement contributes to the global load vector F. This contribution can be determined by

considering the traction force term J w"Tt de. Consider an edge {,_,, acted on by a

raction T, 7, in units of force per unit surface area, shown in Fig. 5.7a. We have

/ Wl = / (4T, + vT ) ae (5.38)
L )

12
Using the interpolation relations involving the shape functions
w=Ng + Nyg,
V= Ng; + Ny, (539)
T = MT, + NT,,
T, = NT, + NT,,
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FIGURE 5.7 Traction load.
and noting that
1 2 1 1
Nide =—& 5, Nidt = 561—2, NN dE = Eel~2
e, 3 -2 -z
b= V(- "1)1 +(n- }’1)2 (5.40)
we get
/ WTTrde = (g1, @ 45, )T (41)
-2
where T¢ is given by

= ﬂz[ml + T 2Ty + Ty, Ty + 2T Ty + 2T, (5.42)
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If p, and p, are pressures acting normal to the line directed to the nght as we move
from 1 to 2, as shown in Fig. 5.7b, then

Ta=-cpp Tau=-cppy Tu=-sp, Tn=-sp

where

s=(11""z) and C=(}’z_)’1)'

6y 4.,

In Eq. 5.42, both normal and tangential distributed loads can be considered. The trac-
tion load contributions need to be added to the global force vector F.

The programs given in this book expect the loads in component point load form.
For distributed loads, we need to determine the equivalent point load components as
illustrated in the following example.

Example 5.4

A two-dimensional plate is shown in the Fig. E5 4. Determine the equivalent point loads at
nodes 7,8, and 9 for the linearly distributed pressure load acting on the edge 7-8-9.

(100, 20)
‘Thickness = 10 mm
FIGURE E5.4

Solution 'We consider the two edges 7-8 and 8-9 separately and then merge them.

For edge 7-8

P =1MPa, p,=2MPa, x, = 100mm, y, = 20mm, x,=85mm, jy = 40mm.

G2= Vo - uf + (0 - ) = 25mm
-n
6,
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Ty = —ps = —12

_lox2s
6

= [-1333, ~100, ~166.7, 125]'N
These loads add to F3, Fyy, Fis, and Fi4, respectively.

For edge 8-9
Py =2MPa, p,=3MPa, x =85mm, y =40mm, x,=70mm, = 60mm,

b2= Vi - uf + (n—p»f =25mm

T

[2Tx1 + T3, 2T + T2, Tt + 2T, Ty + 2T, 1T

TN X, — X
c= = 0.8, s==—=—==06
62 b1a

Ta=-pc=-16 Ty=-ps=-12, T,=—pe=-24,
T,=—ps=-18
1x25
6

= [—233.3,-175,~266.7, ~200]'N
These loads add to Fys, Fi¢, Fi7, and F,, respectively. Thus,
[Rs Fs Fs FRs B; Fg}=[-1333 -100 —400 -300 -266.7 -200]N
L

{21 + Tea ys + Typu Ty + 2o, Tyy + 2L,]T

The point load term is easily considered by having a node at the point of applica-
tion of the point load. If i is the node at which P; = [P,, P,]T is applied, then

0P, = QP + OnFy (543)

Thus, P, and P,, the x and y components of P, get added to the (2i — 1)th and (2i)th

components of the global force F.
The contribution of body forces, traction forces, and point loads to the global force

F can be represented as F — >, (f° + T%) + P.
.

Consideration of the strain energy and the force terms gives us the total potential
energy in the form
= }Q"KQ - Q'F (5.44)
The stiffness and force modifications are made to account for the boundary con-
ditions. Using the methods presented in Chapters 3 and 4, we have
KQ=F (5.45)
where K and F are modified stiffness matrix and force vector, respectively. These equa-
tions are solved by Gaussian elimination or other techniques, to yield the displace-
ment vector Q.
Example 5.5

A CST element is shown in Fig. ES.5. The element is subjected to a body force f, = x*N/m’.
Determine the nodal force vector f*, Take element thickness = 1m.
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FIGURE ES.5

The work potentialis — f, ffudV, where £ = [f,,0]. Substituting for u = Ng. we obtain
the work potential in the form —q"f¢, where f* = / N'fdV, where N is given in Eq. 5.13.

All y components of f* are zero. The x components at nodes 1,2,3 are given, respectively, by

[eav. [wav. Jo-e-nrav

We now make the following substitutions: f, = x%, x = £x, + nx, + (1 — £ — n)x; = 4n,

dV = detd dydg, detd = 24,,and A, = 6. Now, integration over a triangle is illustrated
in Fig. 5.6. Thus,

ZfﬂdV = /0! [1&(161,2)(12):11,45 =32N

Similarly, the other integrations result in 9.6 N and 3.2 N, Thus,
= [32,0,96,

32,0TN n
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THE FOUR-NODE QUADRILATERAL

Consider the general quadrilateral element shown in Fig.7.1.The local nodes are numbered
as1,2,3,and 4in a counterclockwise fashion as shown, and (x;, ;) are the coordinates of
node i. The vectorq = [q,,¢,,. .., qg]T denotes the element displacement vector. The dis-
placement of an interior point Plocated at (x, y) is represented asu = [u(x, y), v(x. )’)]T'

Shape Functions

Following the steps in earlier chapters, we first develop the shape functions on a mastef
element, shown in Fig, 7.2.The master element is defined in £-,m-coordinates (or natural
coordinates) and is square shaped. The Lagrange shape functions where i = 1, 2,3.and
4, are defined such that A, is equal to unity at node 7 and is zero at other nodes. In par-
ticular, consider the definition of N;:

M =1 atnodel
=0 atnodes2 3 and4 1.1
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FIGURE 7.2 The quadrilateral element in £, 7 space (the master alement),

Now, the requirement that N; = 0 at nodes 2, 3, and 4 is equivalent to requiring that
N, = O along edges ¢ = +1and n = +1 (Fig. 7.2). Thus, A; has to be of the form

N=cl-§1-9) 72)

where ¢ is some constant. The constant is determined from the condition N, = 1 at
node 1. Since ¢ = —1, 3 = —1 atnode 1, we have

= ¢(2)(2) (7.3)

which yields ¢ = ;. Thus,
N=i1-801-9 (7.4)
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All the four shape functions can be written as
M=i1-80-n)
= -(1 +&1-m) @3)
=1+ 61 +m)
N=i(1-£)(1+m)

While implementing in a computer program, the compact representation of Eqs. 7.5 is
useful

Np= 5L+ €6)(1 + mmy) 76)

where (£;, ;) are the coordinates of node i.

We now express the displacement field within the element in terms of the nodal
values, Thus, if w = [u, v]" represents the displacement components of a point located
at (¢£,1), and g, dimension (8 X 1), is the element displacement vector, then

w=Ng + Ng; + Nigs + Nogy

v = MNg; + Ngs + Nagg + Nagy (7.72)
which can be written in matrix form as
u=Nq (7.7b)
where
M ON ON ON O
N= N 78
[OM oN 0N 0N a8

In the isoParameUic formulation, we use the same shape functions N; to also ex-
press the coordinates of a point within the element in terms of nodal coordinates. Thus,

x = Nuxy + Noxy + Noxz + Npx,
¥ = Nyu + Noyy + Nyys + Ny, 79

qusequlemly, we will need to express the derivatives of a function in Xx-,
y-coordinates in terms of its derivatives in ¢-, n-coordinates. This is done as follows: A

function f = f(x, y), in view of Eqs. 7.9, can be considered to be an implicit function of
¢andyas f = f[x(¢n), y(£ n)]. Using the chain rule of differentiation, we have

o _fox ofoy
o axof  ayof
of _afex  ofsy

an  dxdm  ayay 10
or
of o
o\ )ax
af [~ ¥ o (7.11)

m 3y
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where J 1s the Jacobian matrix
ax ay

_ |9 e¢
I= ax ay (7.12)

am ay
In view of Eqs. 7.5 and 7.9, we have
J = l[’(1_7I)X1*(1_77)"2“"(1*"'1)"3‘(1‘*‘”)% *(l—n)yﬁ(l*n)yz“r(l+n)y.z-(1+n)y4]

4L A=~ (L) xt 1+Ex+(1-6)x, |~ (1-On—(1+E)n+(1+E)y+ (1-6)y
(7.13a)
N [J“ le}
"21 jZZ
(7.13b)
Equation 7.11 can be inverted as
o of
ax | ) o
of =J! af (7.14a)
8y an
or
o 24
x|\ _ 1 | Ay =) o€
of [~ detJ|:—Jz| 1,,} af (7.14b)
ay an

These expressions will be used in the derivation of the element stiffness matrix.
An additional result that will be needed is the relation

dxdy = det¥ d¢ dn (7.15)
The proof of this result, found in many textbooks on calculus, is given in the appendix.

Element Stiffness Matrix

The stiffness matrix for the quadrilateral element can be derived from the strain energy
in the body, given by

U= /gafedv (7.16)
v

or

U= E:,/hfs(m 717
&)

where ¢, is the thickness of element e.
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‘The strain—displacement relations are

du
e 8x
e={eb= ‘;_: (718)
Yoy o ow
ay  ox
By considering f = u in Eq.7.14b, we have
au au
ax 1 | J T )8
= 19
du det.l|:—12, Jn || ou (715
ay an
Similarly,
o av
ax 1 Jo Ay |) 8
=—— .19b
v detJ |:AJZ| Sy ] 8w (7.190)
ay an
Equations 7.18 and 7.19a,b yield
3
E3
ou
m
=A .20
€ av (7.20)
o
av
n
where A is given by
1 L P 0
= e 0 0 5L J, (7.21)

I Iy h -l
Now, from the interpolation equations Eqs. 7.7a, we have

= Gq (1.22)
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‘where

-(1-m) O (1-m) 0 (1+w) 0 ~(1+x) O
g=1 -9 0 —(1+¢ 0 (1+¢& o 1-& o0

4 0 ~(1-m 0 (I-m) 0 (1+m 0 -—(1+m
0 -(-¢ 0 -(1+H 0 (1+§ o0 1-9
(7.23)
Equations 7.20 and 7.22 now yield
e=Bq (7.24)
where
B = AG (7.25)

The relation € = Bq s the desired result. The strain in the element is expressed in terms
of its nodal displacement. The stress is now given by

o =DBq (7.26)
where DBis a (3 X 3) material matrix. The strain energy in Eq. 7.17 becomes
3 1
u=3 %q"'|:t, / / B'DB det J d¢ dn]q (7.272)
e -1 J-1
= 3iq'ky (1210
where
1 1
kK=t / / BDB detJ d¢ dn (7.28)
-t J-1

is the element stiffness matrix of dimension (8 X 8).
‘We note here that quantities B and det J in the integral in Eq. (7.28) are involved
functions of £ and 7, and so the integration has to be performed numerically. Methods

of numerical integration are discussed subsequently.

Element Force Vectors

Body Force A body force that is distributed force per unit volume, contributes
to the global load vector F. This contribution can be determined by considering the body

force term in the potential-energy expression

/ a’tdv (7.29)
v

Using n = Nq, and treating the body force [ = fe f,]T as constant within each ele-
ment, we get
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/ utav = 3 't (730)
v <

where the (8 X 1) element body force vector is given by

= r,[l: Z: NTdetdedn]{;:} (731)

As with the stiffness matrix derived earlier, this body force vector has to be evaluated
by numerical integration.

Traction Force  Assume that a constant traction force T = (7, T, }"—a force per
unit area—is applied on edge 2-3 of the quadrilateral element. Along this edge, we have
£ = 1. If we use the shape functions given in Eq. 7.5, this becomes N = N, = 0,
N, = (1 — 1)/2,and N, = (1 + 0)/2. Note that the shape functions are linear func-
tions along the edges. Consequently, from the potential, the element traction load vec-
tor is readily given by

_ ths

="

©oT T, 7T,T 00 (7.32)
where £, ; = length of edge 2-3. For varying distributed loads, we may express T, and
T, in terms of values of nodes 2 and 3 using shape functions. Numerical integration can
be used in this case.

Finally, point loads are considered in the usual manner by having a structural node
at that point and simply adding to the global load vector F.

7.3 NUMERICAL INTEGRATION

Consider the problem of numerically evaluating a one-dimensional integral of the form

1
I= /4 fl&)d¢ (7.33)

The Gaussian quadrature approach for evaluating / is given subsequently. This method
has proved most useful in finite element work. Extension to integrals in two and three
dimensions follows readily.

Consider the n-point approximation

1= /,‘ FEYVE = wif(&) + waf(&) + - + w,f(£,) (739

where w,,w,,.. ., and w, are the weights and £, £, ., and ¢, arc the sampling points
or Gauss points. The idea behind Gaussian quadrature is to select the # Gauss points and
n weights such that Eq. 7.34 provides an exact answer for polynomials f(£) of as Jarge
a degree as possible. In other words, the idea is that if the n-point integration formula
is exact for all polynomials up to as high a degree as possible, then the formula will work
well even if fis not a polynomial. To get some intuition for the method, the one-point
and two-point approximations are discussed in the sections that follow.
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One-Point Formula. Consider the formula withn = 1 as

1
[ . (&) d¢ =~ wif(§) (7.35)

Since there are two parameters, w, and &, we consider requiring the formula in Eq.7.35
to be exact when f(£) is a polynomial of order 1. Thus, if f (£} = a, + a,£, then we require

Error = /: (@ + a£)dt — wif(£) =0 (7.36a)
Error = 2ay — wi(ag + a;£;) = 0 (7.36b)
or
Error = ay(2 — w) — wa,é, = 0 {7.36c¢)
From Eq. 7.36¢, we see that the error is zeroed if
w=2 &=0 (7.37)

For any general f, then, we have
1
I= /1 f(£)de =~ 2£(0) (7.38)
which is seen to be the familiar midpoint rule (Fig.7.3).

Two-Point Formula. Consider the formula with n = 2 as

1
[ 1@~ wrte) + wrey (139

We have four parameters to choose: w;, w;, £, and £,. We can therefore expect the for-
mula in Eq. 7.39 to be exact for a cubic polynomial. Thus, choosing f(£) = ap + @,é +
4,8 + a8’ yields

1
Error = [L (ag + 0 + a8 + as?)df} = [wif () + wf(&)] (7.40)

f
T fx)
Approximate 1= ===~ —zarfreoadan g
area = 2f(0) ~—=~ 4
4 A 4
B
) P P ]
Exactarea:f fodds A,
et 4
a4 e 4
»x

FIGURE 7.3 One-point Gauss quadrature.
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Requiring zero error yields

w +wy =2
wié + nd, = 0 (741)
wdl +wfi =3
wé +wdl =0

These nonlinear equations have the unique solution
w=w =1  —§ =£&=1/V3= 05773502601 ... (742)

From this solution, we can conclude that n-point Gaussian quadrature will pro-
vide an exact answer if fis a polynomial of order (27 — 1) or less. Table 7.1 gives the val-
ues of w, and ¢, for Gauss quadrature formulas of orders n = 1 through n = 6. Note that
the Gauss points are located symmetrically with respect to the origin and that symmet-
rically placed points have the same weights. Moreover, the large number of digits given
in Table 7.1 should be used in the calculations for accuracy (i.e., use double precision on
the computer).

TABLE 7.1 Gauss Points and Weights for Gaussian Quadrature

;
[ 10 =3 wse

Number of points, 1 Location, £ Weights, ;
1 00 20
2 +1/V3 = 205773502692 10
3 +0.7745966692 0.5555555556
00 0.8883888889
4 +0.8611363116 0.3478548451
+0.3399810436 0.6521451549
5 +0.9061798459 0.2369268851
+0.5384693101 0.4786286705
0.0 0.5688888889
6 +0.9324695142 0.1713244924
+0.6612093865 0.3607615730
+0.2386191861 0.4679139346
Example 7.1
Evaluate

.
1
1=/[3'+2+
A ey L

using one-point and two-point Gauss quadrature,
Solution For n = 1, we have w; = 2, X =0, and

1=2£(0)
=70




image58.png
Forn =2, welind w, = w, = 1, x; = —0.57735..., x, = +0.57735..., and I ~ 8.7857.
This may be compared with the exact solution

L..= 88165 [
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PROPERTIES OF K

Several important comments will now be made regarding the global stiffaess matrix for
the linear one-dimensional problem discussed earlier:

1. The dimension of the global stiffness Kis (N X N), where N is the number of
nodes. This follows from the fact that each node has only one degree of freedom.
2. K is symmetric.

3. K is a banded matrix. That is, all elements outside of the band are zero. This can
be seen in Example 3.2, just considered. In this example, K can be compactly
represented in banded form as

A A
4 &
A A, A,
' T4
4, A A,
Koungea = E T; + T; T
A, A, A,
A A A
(2] &
Ay
— 0
A

Note that Kygqgeq is of dimension {N X NBW], where NBW is the haif-bandwidth. In
many one-dimensional problems such as the example just considered, the connectivity
of element i is i, { + 1. In such cases, the banded matrix has only two columns
(NBW = 2). In two and three dimensions, the direct formation of K in banded or skyline
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(b)
FIGURE 3.9 Node numbering and its effect on the half-bandwidth.

form from the element matrices involves some bookkeeping. This is discussed in detail

at the end of Chapter 4. The reader should verify the following general formula for the
half-bandwidth:

NBW = max(Difference between dof numbers) 1

connecting an element (355)
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ror example, consider a four-element model of a bar that is numbered as shown in
Fig. 3.9a. Using Eq. 3.55, we have

NBW =max(4 - 1,5-4,5-33-2)+1=4

The numbering scheme in Fig. 3.9a is bad since K is almost “filled up” and consequently
requires more computer storage and computation. Figure 3.9b shows the optimum
numbering for minimum NBW.

Now the potential energy or Galerkin’s approach has to be applied, noting the
boundary conditions of the problem, to yield the finite element (equilibrium) equa-
tions. Solution of these equations yields the global displacement vector Q. The stresses

and reaction forces can then be recovered. These steps will now be discussed in the
next section.
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Summary: Elimination Approach

Consider the boundary conditions

Step 1.

Step 2.

Step 3.

Step 4.

Q= 21,Q5,=8,...,Q, = a,

Store the p,th, p.th,..., and p,th rows of the global stiffness matrix K
and force vector F. These rows will be used subsequently.

Delete the pith row and column, the p,th row and column, ..., and the
prth row and column from the K matrix. The resulting stiffness matrix
Kis of dimension (N - r, N — r). Similarly, the corresponding load vec-
tor Fis of dimension (N — r, 1). Modify each load component as

Fi= Fi= (Kip2r + Kipay + - + Ky pa,) 3.70)
for each dof j that is not a support. Solve

KQ=F

for the displacement vector Q.

For each element, extract the
the Q vector, using element ¢
stresses.

Using the information stored i
each support dof from

element displacement vector q from
onnectivity, and determine element

N step 1, evaluate the reaction forces at

371
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Xxample 3.3

Consider the thin (steel) plate in Fig. E33a, Th
Young's modulus £ = 30 x 106

self-weight, the plate is subjecte

e plate has a uniform thickness ¢ = 1“;(;
psi,and weight density p = 0.2836 Ib/in.". In addition 10

d 10 2 point loag P = 1001b at jts midpoint.

(a) Model the plate with two finite elements,

(b) Write down expressions for the element stiffness matrices and element b0dy
force vectors,

solve for the global displacement vector Q-
each element.

(f) Determine the reaction force at the support.

(¢) Evaluate the stresses in
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FIGURE E3.3

Solution
(a) Using two elements, each of 12 in. in length, we obtain the finite element model in
Fig. E3.3b. Nodes and elements are numbered as shown. Note that the area at the
midpoint of the plate in Fig. E3.3a is 4.5in.2. Consequently, the average area of
element 1 is A, = (6 + 4.5)/2 = 5.25in?, and the average area of element 2 is
A= (45+3)/2=375 in.2 The boundary condition for this model is @; = 0.
(b) From Eq. 3.26, we can write down expressions for the element stiffness matrices of

the two elements as
1 2+ Global dof
30 x10°%x525 1 -1]1
12 -1 1]2
and
2 3
liz_3o><10°><3A75 1 ~-1|2
B 12 -1 1f3
Using Eq. 3.31, the element body force vectors are
Global dof
|
po S x12xomsfi] 1
a 2 1 2

and

g 3IEX12X 0.2836{1} 2

2 1 3





image65.png
is assembled from k' and k” as

1 2 3

5§25 =525 0 1
=525 900 -375|2

0 -375 375)3

The externally applied global load vector Fis assembled from f', £, and the point load
P =1001b;as

(c) The global stiffness matrix

_ 30 x10°
ST

K

89334
F=1153144 + 100
6.3810

(d) In the elimination approach, the stiffness matrix K is obtained by deleting rows and
columns corresponding to fixed dofs. In this problem, dof 1 is fixed. Thus, K is ob-
tained by deleting the first row and column of the original K. Also. F is obtained by
deleting the first component of the otiginal F. The resulting equations are

2 3

30x10°0 900 -375|[o,]  [1153144
12 [-375 37510, ~ | 63810

Solution of these equations yields

Q; = 09272 X 165 in,
O = 09953 x 1075in.
Thus, © = [0,0.9272 X 10°%,09953 x 10]" i,
(e) Using Eqs.3.15 and 3.16, we obtain the stress in each element:

01 =30 X 105 x $[-1 170
! ul-1 1]{049272 x 107
= 2318 psi

and

T =X 10X (-1 1) 0.9272 x 107
0.9953 x 107
= 170psi

(f) The reaction force R,
the first row of K froy
1oad (due to the self-

at node 1 s obtained from Eq. 3.71. This calculation requifes

™ part (¢). Also, from part (c), note that the externally applied
weight) atnote 1is £, = 89334 Ib. Thys,

R = 30 x 10"[525 P
1 8 =325 0o -8.9334
09272 x 19
0.9953 x 10 *
= -13061b
Evidently,

the reaction is e, -
plate. qual and opposite to the gotal downward load on ‘h-‘
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Summary: Penalty Approach
Consider the boundary conditions

Q= a1.Q,, S, Q=g

Step 1. Modify the structural stiffness matrix K by adding a large number Cto

_each of the pyth, p,th, .., and pth diagonat elements of K. Also, mod-
ify the global load vector F by adding Ca, to Fon Cayto F,, ..., and Ca,

10 £,,. Solve KQ = F for the displacement Q. where K and F are the
modified stiffness and load matrices.

Step 2. For each element, extract the el

vector, using element connect;
Step 3. Evaluate the r

ement displacement vector g from the Q

) vity, and determine the element stresses.
eaction force at each support from

Ro = ~C(Q, - &) = 1.2,....r (3.78)
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Example 5.4
Consider the bar shown in Fig. E3.4. An axial load P = 200 X 10° N is applied as shown.
Using the penalty approach for handling boundary conditions, do the following:

(a) Determine the nodal displacements.
{b) Determine the stress in each material.
{c) Determine the reaction forces.

fe——300 mm——p+———400 mm ——

Aluminum Steel
Ay= 2400 mm? Ay= 600 mm®
E,=70 X 10°N/m?  E;=200 % 10° N/m?
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dolution

(a) The element stiffness matrices are

1 2 _* Global dof
L _T0X10°X 24000 1 -1
K=o -1
and
2 3
L 200%10° x 600[ 1 -1
K= 40 -1 1
The structural stiffness matrix that is assembled from k' and k2 is
1 2 3
056 ~056 0

K =109 -056 086 -030
0 -030 030

The global load vector is

F=[0, 200 x 10, 0JF

Now dofs | and 3 are fixed. When using the penalty approach, therefore, a large num-
ber C is added to the first and third diagonal elements of K. Choosing C based ot

Eq.3.80, we get
C = [086 x 10°] x 10*
Thus, the modified stiffness matrix is

8600.56 —0.56 o
K=10° -056 08 -030
0 -030 8600.30

The finite element equations are given by

860056 -056 o (g, 0
109 -056 08 -030 Q¢ =4200 x 10°
0 -030 860030 | g, [

which yields the solution

Q= [151432 X 10, 023257, 81127 x 107" mm

(b) The element stresses {Eq.3.16) are

300 0.23257
= 5427MPa

o =70 x 107 x L1 1]{15.1432 x 10'5}
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where 1 MPa = 10° N/m* = 1 N/mm®. Also,

_ 11 1)fozss
2= W0 X 10 X 7 {8.1127 x 10*}

= —11629 MPa
{c) The reaction forces are obtained from Eq.3.78 as
R =-CQ
= —[0.86 x 10'] X 15.1432 x 10~
= -13023 x 10°

[

[0.86 X 10°°] x 8.1127 X 107
= —69.77 X 1°N -

Example 3.5
InFig. E3.53,aload P = 60 X 10° N is applied as shown. Determine the displacement field,
stress, and support reactions in the body. Take E = 20 X 10° N/mm?

12mm

2
250 mm’ Wall

IhlSOmm 150 mm- 2

®)
FIGURE E3.5

Solation In this problem, we should first determine whether contact occurs between the bar
and the wall, B. To do this, assume that the wall does not exist. Then, the solution to the

problem can be verified to be
Qp = 1.8mm

where (0 is the displacerent of point B'. From this result, we see that contact doaes occur. The
problem has to be re-solved, since the boundary conditions are now different: The displacement
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at B' is specified to be 1.2 mm. Consider the two-element finite element model in Fig. 3.5b.
The boundary conditions are @, = 0and 0; = 1.2 mm. The structural stiffness matrix K is

K = 2010 x 250 _1 7; "1)
150 0 -1 1

and the global load vector F is
F=1[0, 60x10° 0]

In the penalty approach, the boundary conditions Q; = 0 and Q; = 1.2 imply the following
modifications: A large number C chosen here as C = (2/3) X 10'°, is added on to the 1st
and 3rd diagonal elements of K. Also, the number (C x 1.2) gets added on to the 3rd
component of F. Thus, the modified equations are

o200 -1 0 (e 0
St 2 1 Kep={eoxiw
o -1 2000t o, 80.0 x 107

The solution is

Q =[749985 X 105, 1500045, 1.200015] mm
The element stresses are

o =200 % 160 x LI 1]{7.49985 x 10'5}

15 1500045
= 199996 MPa
oy =200 x 10° x L1 1]f1500045
130 1200015
~ ~40004MPa

The reaction forces are

—C X 7.49985 x 107
= -49.999 X 1I’N

and

Ry = ~C x (1200015 - 1.2)
= -10.001 x 1°N
The results obtained from the penalty approach have & small approximation error due 1

the flexibility of the support introduced. In fact, the reader may verify that the elimination

approach for handling boundary conditions v }
AR 100 5 E Yields the exact reactions, Ry = =500 x 10 I:
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INTRODUCTION

The finite element analysis of truss structures is presented in this chapter. Two-
dimensional trusses (or plane trusses) are treated in Section 4.2. In Section 4.3, this treat-
‘ment is readily generalized to handle three-dimensional trusses. A typical plane truss is
shown in Fig. 4.1. A truss structure consists only of two-force members. That is, every truss
element is in direct tension or compression (Fig. 4.2). In a truss, it is required that all loads
and reactions are applied only at the joints and that all members are connected togeth-
er at their ends by frictionless pin joints. Every engineering student has, in a course on
statics, analyzed trusses using the method of joints and the method of sections. These
methods, while illustrating the fundamentals of statics, become tedious when applied to
large-scale statically indeterminate truss structures. Further, joint displacements are not
readily obtainable. The finite element method on the other hand is applicable to stati-
cally determinate or indeterminate structures alike. The finite element method also pro-
vides joint deflections. Effects of temperature changes and support settlements can also

be routinely handled.
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FIGURE 4.1 A two-dimensional truss.
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FIGURE 4.2 A two-force member.
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PLANE TRUSSES

Modeling aspects discussed in Chapter 3 are now extended to the two-dimensional truss.
The steps involved are discussed here.

Local and Global Coordinate Systems

The main difference between the one-dimensional structures considered in Chapter 3
and trusses is that the elements of a truss have various orientations. To account for these
different orientations, local and global coordinate systems are introduced as follows:
A typical plane-truss element is shown in local and global coordinate systems in
Fig. 4.3. In the local numbering scheme, the two nodes of the element are numbered 1
and 2. The local coordinate system consists of the x'-axis, which runs along the element
from node 1 toward node 2. All quantities in the local coordinate system will be denot-
ed by a prime ('). The global x-, y-coordinate system is fixed and does not depend on
the orientation of the element. Note that x,y, and z form a right-handed coordinate sys-
tem with the z-axis coming straight out of the paper. In the global coordinate system,

x

Deformed
e element

4’ = g cos@ + g, sing
o 4% = g3 cosf + g sind

olobal coordinate system. tin (a) a local coordinate system and (b) 2
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every node has two degrees of freedom (dofs). A systematic numbering scheme is adopt-
ed here: A node whose global node number is j has associated with it dofs 2j — 1 and
2j.Further, the global displacements associated with node j are Qy;; and Qy;, as shown
in Fig. 4.1.

Let g1 and g be the displacements of nodes 1 and 2, respectively, in the local
coordinate system. Thus, the element displacement vector in the local coordinate system
is denoted by

q =[gnal @)

The element displacement vector in the global coordinate system is a (4 X 1) vec-
tor denoted by

9= (01,59 %]" “2)

The relationship between g’ and q is developed as follows: In Fig. 4.3b, we see that g}
equals the sum of the projections of g, and g, onto the x’-axis. Thus,

qi = qicosf + gsinf (4.3a)
Similarly,
g3 = gsc080 + gsind (4.3v)

At this stage, the direction cosines £ and m are introduced as £ = cos@ and m = cos ¢
(= sin #). These direction cosines are the cosines of the angles that the local x'-axis
makes with the global x-, y-axes, respectively. Equations 4.3a and 4.3b can now be writ-
ten in matrix form as

7 =1q (@)
where the transformation matrix L is given by
¢ m o0 0
= 4.5
L l:ﬂ 0 ¢ m:I “3)

Formulas for Calculating ¢ and m

Simple formulas are now given for calculating the direction cosines ¢ and i from nodal
coordinate data, Referring to Fig. 4.4, let (x,, ;) and (x, y;) be the coordinates of nodes
1 and 2, respectively, We then have

FIGURE 4.4 Direction cosines.
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where the length £, is obtained from
L=V -x)+(n-n’ @7

The expressions in Eqgs. 4.6 and 4.7 are obtained from nodal coordinate data and can
readily be implemented in a computer program.

Element Stiffness Matrix

An important observation will now be made: The truss element is a one-dimensional
element when viewed in the local coordinate system. This observation allows us to use pre-
viously developed results in Chapter 3 for one-dimensional elements. Consequently,
from Eq. 3.26, the element stiffness matrix for a truss element in the local coordinate sys-

tem is given by
EA]l 1 -1
k= .
£ l:—l lj| @8)

where A, is the element cross-sectional area and E, is Young’s modulus. The problem
at hand is to develop an expression for the element stiffness matrix in the global coor-
dinate system. This is obtainable by considering the strain energy in the element. Specif-
ically, the element strain energy in local coordinates is given by

U =1q"k'q (49
Substituting for q' = Lyq into Eq. 4.9, we get
U, =4q"[Lk'L]g (4.10)

The strain energy in global coordinates can be written as

U. = 1q'kq (a.11)
where k is the element stiffness matrix in

N € global coordinates. From the previous equa-
tion, we obtain the element stiffness matr; P 4

ix in global coordinates as
k=LKL (4.12)
Substituting for L from Eq. 4.5 and for k’ from Eq. 4.8, we get

& tm - —fm

ke EAl tm o e g
& |- -em g m

—tm —m g g
The element stiffness matrices are assembled j
tural stiffness matrix. This assembly is illustrat

for directly placing element stiffness matrices i
line solutions is explained in Section 4.4

n the usual manner to obtain the struc-
ed in Example 4.1. The computer 10gic
nto global matrices for banded and sky-
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‘The derivation of the result k = L'k’L also follows from Galerkin’s variational
principle. The virtual work 8W as a result of virtual displacement J’ is

W = ¥T(k'g') (4.14a)
Since §s’ = Lip and q' = Lg, we have
sW = ¢T[LTK'L]q (4.14b)
= ¥'kq

Stress Calculations

Expressions for the element stresses can be obtained by noting that a truss element in
local coordinates is a simple two-force member (Fig. 4.2). Thus, the stress ¢ in a truss
element is given by

o= E,e {4.15a)

Since the strain ¢ is the change in length per unit original length,

_o—4
o =E, .
E, q;}
==f-1 1 4.15b)
é',[ ]{ @ (4.15b)

This equation can be written in terms of the global displacements q using the transfor-
mation q' = Lq as

E,
o= =%[-1 1]Lq (4.150)
A
Substituting for L from Eq. 4.5 yields
E,
o= ?'[—é’ -m € mlq {4.16)

Once the displacements are determined by solving the finite element equations, the
stresses can be recovered from Eq.4.16 for each element. Note that a positive stress im-
plies that the element is in tension and a negative stress implies compression.

Example 4.1
Consider the four-bar truss shown in Fig. E4.1a. It is given that E = 29.5 X 10°psi and
A, = 1in?for all elements. Complete the following:

(a) Determine the element stiffness matrix for each element.

(b) Assemble the structural stiffness matrix K for the entire truss.

{¢) Using the elimination approach, solve for the nodal displacement.
(d) Recover the stresses in each element.

(e) Calcutate the reaction forces.




image78.png
250001b
Dy 26
Z L.& ® ED t . 0
4
® E=295x10°psi
102
30in. Qs @ o =1.0in’
3
1b
%1 —0 2 T g, 2O . x
! ® %A
\——40 in—————=
(a)
0 25000
4167
Forces:1b
15833 ¢ )T, —— 20000
3126 21879
(%)
FIGURE E4.1
Solution

(a) 1t is recommended that a tabulor form be used for representing nodal coordinate
data and element information. The nodal coordinate data are as follows:




image79.png
‘1he element connectivity table is

Element 1 2
1 1 2
2 3 2
3 1 3
4 4 3

Note that the user has a choice in defining element connectivity. For example, the con-
nectivity of element 2 can be defined as 2-3 instead of 3-2 as in the previous table. How-
ever, calculations of the direction cosines will be consistent with the adopted connectivity
scheme. Using formulas in Egs. 4.6 and 4.7, together with the nodal coordinate data and
the given element connectivity information, we obtain the direction cosines table:

Element (A [ m
1 40 1 0
2 30 0 -1
3 50 08 06
4 40 1 [

For example, the direction cosines of elements 3 are obtained as € =
(x3 — x1)/€. = (40 — 0)/50 = 08 and m = (3 — y)/€ = (30 - 0)/50 = 0.6.
Now, using Eq. 4.13, the element stiffness matrices for clement 1 can be written as

1 2 3 4 <«Global dof

10 -1 0]1

6
k‘=~———29'54:10 oo 002
-10 10|3
00 00 a

The global dofs associated with element 1, which is connected between nodes
1 and 2, are indicated in k' earlier. These global dofs are shown in Fig. E4.1a and as-
sist in assembling the various element stiffness matrices.

The element stiffness matrices of elements 2, 3, and 4 are as follows:

5 6 3 4
O LETC) PO
% 1o 0 o of3
lo -1 o 1] 4
1 2 s s
6 48 —64 —48] 1
e BSXICN e s a8 —36) 2
O |6t -as 64 |5
|-48 -36 48 36 6
7 8 5 6
[1 o -1 o] 7
k‘=M o o o0 o 8
0 1 0 1 ofs
l o o o ofs
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(b) The structural stiffness matrix K is now assembled from the element stiffness matnces.
By adding the element stiffness contributions, noting the element connectivity, we get

1
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(¢) The structural stiffness matrix K given above needs to be modified to account for
the boundary conditions. The elimination approach discussed in Chapter 3 will be
used here. The rows and columns corresponding to dofs 1,2, 4,7, and 8, which corre-

spond to fixed supports, are deleted from the K matrix. The reduced finite element
equations are given as

15 0 o ]fe 20000
295 X 10° 3
g | O 268 576 {05y = 0

0 5716 2432l0, ~25000

Solution of these equations yields the displacements

o 27.12 x 107
Qsp =19 565%107? }in.
Qs -2225 X 107

The nodal displacement vector for the entire structure can therefore be written as
Q= [0.0.27.12 X 10°%,0,5.65 X 10 ~2225 x 10~,0,0{" in.

{d) The stress in each element can now be determined from Eq. 4.16, as shown below.

The connectivity of element 1is 1 ~ 2. Consequently, the nodal displace-
ment vector for element 1is given by q = [0,0,27.12 x 10~,01", and Eq. 4.16 yields

o
U;z9.5><106[1010 0
=222 2 0

40 ! 2712 x 107

0

= 200000 psi
The stress in member 2 is given by
565 x 107
29.5 x

o= 23X bl 010 -1 25x107
+27.12 x 1073

0

—21880.0 psi
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Following smilar steps, we get
ay = ~52080psi
o4 = 4167.0psi
(e) The final step is to determine the support reactions. We need to determine the reac-
tion forces along dofs 1,2, 4,7, and 8, which correspond to fixed supports. These are
obtained by substituting for Q into the original finite element equation R = KQ — F.

In this substitution, only those rows of K corresponding to the support dofs are need-
ed,and F = O for these dofs. Thus, we have

[
[
R, 2268 576 150 0 -768 -576 0 O »
Bl sosxqge 576 43 0 0 =57 ~432 0 0 27'12’;10
Ry¢p = T 0 0 0 200 0 -200 0 0 565 X 107
R, 0 [ 0 0 -150 o0 150 0 __22'25 x 107
Ry o ¢ o6 o0 o0 6 0o 0 =
0
which results in
Ry —15833.0
R, 3126.0
R, = 21879.0 pib
R, -4167.0
Ry 0

A free body diagram of the truss with reaction forces and applied loads is shown
in Fig. E4.1b. [ ]
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INTRODUCTION

Beams are slender members that are used for supporting transverse loading. Long hor-
izontal members used in buildings and bridges, and shafts supported in bearings are
some examples of beams. Complex structures with rigidly connected members are called
frames and may be found in automobile and acroplane structures and motion- and force-
transmitting machines and mechanisms. In this chapter, we first present the finite clement
formulation for beams and extend these ideas to formulate and solve two-dimensional

frame problems.
Beams with cross sections that are symmetric with respect to plane of loading are

considered here. A general horizontal beam is shown in Fig. 8.1. Figure 8.2 shows the
cross section and the bending stress distribution. For small deflections, we recall from

elementary beam theory that

i P z,
a1 1110 N
—L
@)

FIGURE 8.1 (a) Beam loading and (b} deformation of the neutral axis.
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FIGURE 8.2 Beam section and stress distribution.
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where o is the normal stress, € is the normal strain, M is the bending moment at the sec-
tion, v is the deflection of the centroidal axis at x, and 7 is the moment of inertia of the
section about the neutral axis (z-axis passing through the centroid).

Potential-Energy Approach

The strain energy in an element of length dx is

1

dUr—/osdAdx
2 Ja

LM,
2\&r J, Y dA |dx
Noting that fA y*dA is the moment of inertia , we have

1M
dU = >— 8.4)
2 Eldx (

When Eq. 8.3 is used, the total strain energy in the beam is given by
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The potential energy of the beam is then given by

L
n=%/ EI( ) /p’udx EPv,,, ZMkvk (86)

where p is the distributed load per unit length, 7, is the point load at point m, M, is the
moment of the couple applied at point k, v,, is the deflection at point m, and v is
the slope at point k.




image85.png
FINITE ELEMENT FORMULATION

The beam is divided into elements, as shown in Fig. 8.4. Each node has two degrees of
freedom. Typically, the degrees of freedom of node i are Q,;_, and Q,;. The degree
of freedom Q;_, is transverse displacement and Q,, is slope or rotation. The vector

Q=100 0u]" (8.13)

(Lx—x
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FIGURE 8.4 Finite element discretization.
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FIGURE 8.5 Hermite shape functions.

represents the global displacement vector. For a single element, the local degrees of
freedom are represented by

q=[a,90 490" (8.14)

The local—global correspondence is easy to see from the table given in Fig. 8.4. q is same
as vy, v}, vz, 1)1] . The shape functions for interpolating v on an element are defined in
terms of £ on —1 to +1, as shown in Fig. 8.5. The shape functions for beam elements
differ from those discussed earlier. Since nodal values and nodal slopes are involved, we
define Hermite shape functions, which satisfy nodal value and slope continuity
requirements. Each of the shape functions is of cubic order represented by

H =a+b¢+cg+dg, i=1234 (8.15)

The conditions given in the following table must be satisfied:

H, | Hi | H, | Hy | Ho | Hy | Hy | H}

-1 1 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 1

The coefficients a;, b;, ¢;, and d; can be easily obtained by imposing these conditions Thus.

Ho=11- €2+ or j2-3+8)
Hy=i(1-g+1) o {(1-¢-£+8)
Ho=3(1+ 622 -§ or {{2+3-¢) (8.16)
H,='a+ &t -1) or j(- 1-¢+8+8)




